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MINIMIZATION OF THE TRUNCATION ERRORBY GRID ADAPTATION

NAILK.YAMAI,EI:A'*

Abstract. A new grid adaplation strategy, which minimizes the truncation error of a l_th-or(ter finite

difference approximation, is l)rot)ose(I. The main idea of the method is based on the observation that the

global truncation error associated with discretization on nonuniform meshes can 1)e nfinimized if the interior

grid t)oints are redistribute(l in an ol)timal se(tuence. The method does not explicitly require the truncation

error estimate and at the same time, it allows one to increase the design or(ter of at)proximati(m t)y one

globally, so that the same finite difference el)crater reveals sut)erconvergence properties on the optimal grid.

Another very lint)errant chara(:teristic of the metho(t is that if the differential operator and the metri('

coefficients are evaluated identically l)y some hybri(t apl)roximation the single ()ptimal grid generator can

be employe(l in the entire computational domain indel)endently of points where the hybrid diseretization

switches from one al)t)roximation to ailother. Generalization of the present method to multil)le dimensions

is presented. Numerical calculations of several one-(timensional an(t one two-dimensional test examl)les

(lemonstrate the performance of the metho(t and corroborate the theoretical results.

Key words, truncation error, grid a(tat)tation criterion, finite difference approximation, error equidis-

tribution

Subject classification. Applied and Numerical Mathematics

1. Introduction. Grid adaptation has now become widesprea(t for solving multi-dimensional partial

differential equations in arbitrary-shat)ed domains. One of the most important problems associated with the

adaptive grid generation is an essential effect of the grid point distribution on error in the numerical sohltion.

Until the present time little attention has been paid to the fact that the concentration of grid points in regions

which most influence the accuracy of the numerical solution may at the same time intro(tuce additional error

due to the grid non-uniformity [1] [3].

There are two basic strategies of the grid adaptation, namely, grid refinement and grid redistrit)ution

techniques. In the first al)t)roach grid nodes are added to locally enrich the grid to achieve higher accuracy.

In the second at)t)roaeh the nmnber of grid nodes is fixed and the idea is to adjust the t)osition of grid points

to improve the numerical solution accuracy. In spite of significant distinctions, for both methods reliabh,

and efficient grid adaptation criteria are needed.

A nulnber of grid adat)tation criteria based on the equidistribution principle have been developed. As

has I)een shown in [4], the grid l)oint distribution is asymptotically ot)timal if some error measure is equally

distributed over the field. One of the widely-used approaches is to redistribute grid points in accordance

with the arc length and the local curvature of the solution curve [5], [6]. This kind of clustering is inten(ted

to reduce the error in the vicinity of strong gradients and local extrema of the numerical solution, but it

(toes not necessarily guarantee improvement in the accuracy where the solution is smooth.

Another (:lass of methods is based on equidistribution or minimization of the h)cal truncation error or

its estimate [7] [10]. In [7] the error estimate obtained by using a finite difference at)t)roximation of the
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leadinglruncation(,rrorttwmis rquidistrilmtedby thegridpoint redistribution.KlopferandMcRae[8]
solvea ()he-dimensionalshock-tubeproblemusingtheexplicitpredictor-correcterscheineof MacCormack
ona grid dynamicall.vadapted1othesolution.Theerrorestimateis the leadingtruncationerrorterm
of thediff(,rentialequationstransformedto thecomputationalcoordinates.Themetriccoefficientis taken
asa linearflmctionof thesmoothederrormeasure.Forsolvinga second-ordertwo-pointboundaryvalue
problemwith a center(,d second-order finite difference scllenle Denny and Landis [9] suggest to determine

tim ot)timal ('oordinate mapping st> that th(, entire truncation error vanishes at all grid points. Hou,t,vt,r.

this grid gt,nerator concentrates grid nodes when, the solution is smooth rather than near steep gradients.

Thus. the error reduction occurs in regions which do not practically affect the mmmrical solution accuracy.

An alternativ(, technique is employed in [10] whert, the optimal coordinate transformation is constructed as

the' solution of a constrained parameter optimization problem nfinimizing a measure of the truncation error.

The (,rlof lll('asure used is a finite difference evaluation of the third (lerivative of th(, nunmrical s<>luti(>n

calculated in the ('oInputational space. The main drawback of all the metfiods mentioned abov(_ is the fact

that the error estimates (to not t)rot)erly take into account that part of the truncatit>n error which is caused

hv the nonunifl>rm grid si)acing. Furthermore. it is not clear how t() extend these metht)ds to more general

equati(>ns and discretizations as well as to multiple diinensions.

A grid adaptation t)ro('edure equidistrilmting an error estiinate of the numerical solution has successfully

been used in [11] t() reduc(, simulation error in such integral quantities as the lift or drag. This error

estimate is directly related to the local residual errors of the primal and adjoint solutions of the Enler

(,quations. As it follows from the nmnerical results presented in [11], the order of accura(:y of the integral

outputs increases by ()he if the proposed adaptation strategy is einployed. Although, this approa(:h prt>vittes

signifi('ant improvement in the at'curacy of the functional, the error estimation proce(hlre is quite ('xl)ensive

in terms (>f ct)mt)utational time since except for th(, solutioIl of the primal t)roblem it is needed to solve the

adjoint Euler equations that doubles the computational efforts.

Tl_e formulation of an adaptive Inesh redistribution algorithm for boundary value problems in on(,

dimension has b(,en presented in [12]. Tfie analysis uses the error minimization to produce an optimal

t)i(,cewise-polynomial interpolant in a given norm that leads to the development of a family of grid adaptation

criteria. Despitt, the fact that the present approach works well in one dimension this error equi(tistril)utit>n

analysis can not be directly extended to multiple dimensions [13].

In [14] and [15] th(, finite element residual is applied to provide a criterion for determining where a

tinit(, (qement mesh retluires refinement. As has been noted in [16] for hyl)erboli(: problems with non-smooth

st>lutit>ns the fin|t(' element residual may be an ineffective error estimator since for such problems the residual

measured in the Le norm diverges whereas the numerical solution (:onverges in this norm. The problenl might

I>t, ov(,r('(mlc if the divergence (>f the residual is localized to tim area of non-smoothness and th(, residual

would then t)t, used as a local error indicator. However, the localization of discontimfities becomes a very

('omt)lit'ated t)rol)h'nl in multiple dimensions.

[t ('an bt, shown that th(, truncation error (ff an)" differential el)crater obtaine(t on a nommiform grid

consists of two different l>arts. The first one. which always exists on a mdform mesh, is due to t h(, at)-

proximation of the differential op(_rat(>r itself. Th(' second one is caused by the contributioil to the error

fl'om the hi)nun|form grid N)acing. As the grid is locally refined or re(tistribute(l the first part of the error

decreases while the st,tend part may consideral>ly increas(, because of the grid non-uniformity. All of tit(,

equidistribution methods mentione([ above redistribute grid t)oilltS in accordance with one or another error

(,st|matt, ()t)taint,d on a non-adal)ted grid. but in d(>ing so the grid adapt.at|on itself introduces additional



errorwhichchanges the error distribution. Therefore, to account for this change in the error distribution

the grid adaptation procedure 1)ased on the error etluitlistribution strategy should be repeated iteratively

until the error estimate norm is e(tually distributed over the field. Note that for moving meshes dynamically

adapted to the solution the iterative pro(:edure should bo done at each time step to get the optiinal mesh

characterized by having the error equidistributed throughout the domain.

The main ()})j(,(:ti\,(, of lhis l)at)er is to construct an ot)timal coordinate transformation so that the

leading truncation error term of an arbitrary pth-ord(,r finite difference approximation is minimized that

provides SUl)erconvergent results on the optimal grid. In contrast to tile error oquidistribution 1)rincil)le.

for tile present technique a postqriori error estimate is not explicitly required. Nlrthermore, the new grid

adal)tation criterion allows one to minimize the error due to t h( _ diff(,rontial ot)erator itself an(t th(, error owing

t.o the evaluation of the metric co(,ffici(,nts simultaneously. An¢)th('r very attractive feature of tim t)resent

al)t)roach is its apl)li(:ability to hybrid at)t)roximations which depend on s(nne basic l)rot)erti(_s of the solution

such as a flow direction, soni(' line an(l others. If the metric ('oeffi('ients are evaluated by the same hyl)ri(t

dis(:retization used for the differential ol)erator , the new grid adat)tati(m criterion remains valid in the whole

computational (lomain regardless to points where the hybrid scheme switches from one apt)roximation to

another. Extension of the new a(tat)tation (:riterion to multit)le dimensions is i)resented. Numerical exmnples

considered illustrate the ability of the method and corrol)orate the theoretical analysis.

2. Grid Adaptation in One Dimension. \\'e collsider the truncation error of th(, firs! derivative

apt)roxilnated on a 1D nonuniform gri(t. Let .r and _ denote the l)hysi(:al an(t (:Olntmtational coordinales.

respectively. Without loss of generality it is assumed that a < x < b an(l 0 < _ < 1. A one to one coordinate

transformation between the t)hysical and the ('omtmtational donmins is given by

(2.1)

where

:r = z(_),

.r(0) = .
(2.2) x(1) = b.

It is assume(t that the above maPt)ing is not singular so that the JacoI)ian of the transformation is a strictly

positive function, i.e.

(2.3) x( >0, V_E [0,1].

Tile nonuniform grid iI1 the physical space is obtained as images of nodes of a unihn'm mesh in the ('omtm-

tational domain

i

(2.4) xi--x(4i), _,i--- _, i--0,1 .... I.

Taking into account the coordinate transformation Eq.(2.1) the first derivative ofa flmction f(x) with respect

to a' can be written as follows

fe
(2..5) fr = --.

To ('onstruct a pth-order al)t)roximat.ion of f,,. in the t)hysi(:al domain we at)proximate f( an(t .r( 1)y sore('

pth-order finite (tiff(,renc(, expressions in t.h(' computational (lomain

_+12

E (_'fl
I=i I,

(2.6) L,,(f,.) = i+,.e

y_ /3,, .r,,
17Z_ i -- 1111



where x,,, = a,((,,,), ft = f(_l); Lt, is a finite difference operator; the indexes /1,1.2 and uh,m2 as well as

the coefficients (_l and/_,, depend oi1 particular at)tn'oximations used for evaluating f_ and x_, respectiwqy.

Henceforth. we shall assume that the functions f(_) and x(_) are smooth enough so that all derivatives

needed for the derivation are continuous functions on ( C [0, 1]. Expanding the nominator and denominator

_f Eq.(2.6) in a Taylor series with respect to (s and omitting the index i on the right hand side yield

(2.7)

i+l_
= f_f f IZ'4- la/f/ f_ +_p,_ I-XU'+O(-X(t'4-1)

I--i-ll

i+m.2

--_" .(P+J/_Mj, + ()(_(t,+l),dm.rm = :r_ + cp._£

where

OJ'+lx f_j,+Jl _ Or+if _ = 1U 7'

Cf aud C/,' are constants dependent on at and /;¢.... respectively. Substituting Eq.(2.7) into Eq.(2.6) and

taking into a(:(:()tlilt that a:_ > 0, V( E [(), 1] one can write

(_f AfpF(p+ | )
(2.8) Lh(f_) = f_ +--"--" _ + ()(__p+l).

{

Assuming that __k( is chosen to be sufficiently small so that ,..k(Pbr_P+l)/x_l << 1, Eq.(2.7) can be linearized

as follows

__ ('-'f,\,¢l' f(p-F1 ) fix _, .(P • )1 (.f_ + _ J,-, _e 1 - -- + ()(.5( _+_ ).(2.9) Lt,(f_) = a'_ ut, x_ _

Note that the error introduced bv the linearization is of the order of O(-S_"P+_). Neglecting higher order

terms in Eq.(2.9) we have

f(p+l } x(P+I)

(2.10) Tp(x) = Lh(fx) -- f_. = cf.x( ',_ C_L(P __-_f_.
x_

The right hand side of Eq.(2.10) is the leading trun(:ation error term. Thus, if the metric coefficient x_

is evaluated numerically as in Eq.(2.6) the asymptotic truncation error of any pth-order finite difference

approximation consists of two different parts, one of which is due to the evaluation of f_ and the second one

is caused by the dis('retization of the metric coefficient x£. It shoukl be en_t)hasized that any grid adaptation

I)ase(1 on minimization or equi(tistribution of the first t)art of the truncation error alone is not sufficient since

th(, second part of the truncation error may drastically increase in regions where .r(() rat)idly changes. In

other words, any inconsistent grid adaptation transfers the error from the first term of the truncation error

to the se('ond one and vice versa. To minimize both l)arts of the truncation error simultaneously we impose

the ti)llowing restriction on th(, ('oordinate mapping x((), V_ _ [0, 1]

(2.11) (-,f ¢(p+_) .... . .l_,+_) f_ .,_,_ _'_ - %,._ < O(-M)x_.

If Eq.(2.11) hol(ts the asympt()ti(' ()r(ter of ai)proximation of Eq.(2.6) (2.7) (m the ()ptimal grid generate(t by

the real)ping :r(_) is p + 1 in the entire computational domain. Ret)lacing the inequality sign by the equality

one in E(t.(2.11) the gri(l adaptation criterion can be ext)ressed as

c'f _(_'+_) c ',-(_'+_ = O(A():r_.(2.12) _,a_ x_ - _)._ )f_



Recallthat the coefficients C f and C_" depend on the particular approximations used and do not depend on

f(() and x((). One of the nlost imt)ortant classes of approxinlation is a consistent approxinlation when the

,fsame differen('e operator is enq)loyed to evaluate the derivatives f_ and :rz. In this ('as(, t lw coeffi('ients (v

and C/,' are idemical and Eq.(2.12) is silnplified to

(2.13) f_v+ll _ r x {p+I} = ()(A_)zr_,,tJ'

or" setting the right hand side equal to zero yiehls

(2.14) f(p+ 1 _, (p+l)
):Q -- j_:r_ = 0.

There are several advantages of such a simplification. First of all, the use of the same difference approx-

imation for both f_ and a:_ elinfinates the f, term fl'om the truncation error whMl is the inost troublesonw

part of the error being detmndent on the first derivative which is evahlated. Actually let us represent fz and

f((p+ll ill terIllS of the :r derivatives

(2.15) f_,,+') ( e, e, ,,,+1 a'+' )el.,'+'>= _ + x e_/ f = :r_V+ll L. + (p + 1)x_Pl.r_f._.,. +... +.,_ .

Note that the binonfial theorenl can not be used to expand the power of the derivatiw, operator in the abow_

forlnula since 0/0_ and :r,_0/0x do not conlnlute. Substituting the above expressions into Eq.(2.10) the

leading t erIn of tile truncation error Tl,(:r ) Call be written as follows

(p+ 1)

(2.16) T,,(x) : (C/- C,,)A_* v:r_-)e,, + C[ [(p+ 1)x_p)f,_. ___ ... _.}_j._'f_p+l,]

:r(

From Eq.(2.16) it is clear that if C/ _ (')_ then the trmlcation error depends on the frst derivative f, being

approximated. That is why it is very important to evaluate the metric coetficient by the same difference

approximation used for f_. It should be noted, that if x_ is approximated by the exact analytical expression

or any finite difference fornmla different from that which is eml)toyed to calculate f_ it gives rise to tile f,

term in the truncation error.

Another advantage of the consistent apt)roxiination of f_ and .re is that the single optilnal grid in the

sense of Eq.(2.14) can be generated for hybrid discretization, when the coefficient C_ may implicitly depend

on the function f((). The identical nunlerical at)proxinlation of x_ and fe removes tile dependence of the

ot)timal mapping on points in the physical domain where the hybrid schenle switches from one apl)roxinmtion

to another. If this is the case the optimal grid point distribution depends only on the order of at)t)roximation

and is completely indel)endent of the particular finite difference fornmla used.

As has already been mentioned, Eq.(2.14) is a grid adaptation criterion, but at the same tilne this

equation can be treated as a grid generation equation. To provide the existence of the sohltion of Eq.(2.14)

it is asstuned that f< > • > 0. V( • [0,1], and f(() • C p+I[O,1]. It can easily be seen that x(() =

q f(() + ('2 is the solution of Eq.(2.14), but this trivial solution is not appropriate since it means that f(x)

is a linear function of x in the physical space. Another problem associated with tile sohltion of Eq.(2.14)

is t)(mndary conditions. Theoretically, to find tile unique solution of Eq.(2.14) p + 1 boundary conditions

should be imposed while only two boundary conditions Eq.(2.2) are ax,aila|)le. In spite on tilt, abovementioned

difficulties the optinlal grid generation problem Eqs.(2.14),(2.2) can be solved analytically fl)r very important

cases p = 1.2 and the approximate analytical solutions can be obtained for higher order discretizations p _> 3.



2.1. First-Order Approximation, p = 1. For a first-order accm'alo approxintation p is equal to one

in Eq.(2.13) whi('h takes the form

(2.17) f_,x_ - f_._r_,, = ()(_X_)a'_.

Using the folh)wing ext)ression fi)r the second (h,rivative

Eq.(2.17) written in the physical sllace is reduced to

(2.18) _.,. -

Integrating Eq.(2.18) and taking into a('('ount the boundary ('onditions ((a) = 0. ((b) = 1 yiehl

,r

.f f,.,.,l:,,

(2.19) <(a')- _,

J" f x.,.dx
(_

However. to satisfy Eq.(2.18) the folh)wing restriction shouhl 1)e imposed on f.,.x

b

(2.20) / f.,.,da, = 0(_<).

Since c, > 0 from Eq.(2.18) it follows that L., > 0. Consequently, Eq.(2.20) means that the second

d(,rivative f .... has to be of the order of O(..X_) for all x E [a,b]. In other words, if f(z) is an essentially

nonlinear fun('tion, so that Eq.(2.20) is not satisfied, it is impossible to increase tile global order of accura(:y

of f, by the grid point redistribution.

2.2. Seeond-Order Approximation, p = 2. If both f_ and a:_ are evaluated identically by a second-

order accurate formula tit(' grid adaptation equation Eq.(2.13) written for p = 2 becomes

(2.21) f,_eexe - f_"eee = ()(._X_)x_

Let us transform the derivatives in Eq.(2.21) from the con|putat.ional space to the physical space

f_ = fxx_

Substituting Eq.(2.22) into Eq.(2.21) we have

(2.23) f,,,.,.x_ + 3f.,.,x_ = ()(_k_)x_

Using the following ext)ressions for ill(, metric coefficient and its derivative

1

= -

and assuming that f,.,. ¢ 0. Vx E [a, b] Eq.(2.23) can be rewritten as

(2.24) f"'"" - 3 ('* {"
f.,..,- (.,. + O(A<)-- f .g j,



Since a decrease in the last, term in tile above equation increases the approximation a('euracv we neglect tile

()(.5() term and integrate tilt, left and right hand sides of Eq.(2.24) with respect to :r to give

(2.25) _:,!= C.f,.,.

where C is a constant of the integration. Equation (2.25) has one real and two c<mllilex roots. Since we seek

only real roots the comt)lex roots are not considered. Taking into act:omit the boundary conditions Eq.(2.2)

the above equation can readily be integrate(l, that gives

(2.26)

d'

J'(.L, )_l:_4r

_0r) - "
h

j'( fr,r )l /3 (Lr

If a grid is generated in accordance with the optimal mal)liing Eq.(2.26) the leading term of the trun('ation

error is zero for all points in In, b] and the glolial order of aeeurac v is increased fl'om 2 to 3.

The optimal grid point distributkm defined hy Eq.(2.26) can be applied if f.,., is a positive function

otherwise tile mapping becomes singular that leads to the gri(l degeneration. However. this problem can be

overcome. For that purpose we divide the interval [a, b] on subintervals where jr.,..,, is of ('onstam signs. Let

a' 1 < .r < a:.7 be an interval where the second (terixative is negative, i.e. f,.,. = -IL,.I < o. Then. Eq.(2.26)

])eCOllleS

(2.27)

i: - i:(f,..,. )1 '/:_dm If,,,,;Ij/:_dx

_(.,.) _ .<- _ ,,7
*._> .,,2

f (f,.,.)'/:'d:r - f K._._l'/ada .
*7 "7

Froni Eq.(2.27) it follows that the nietric coefficient #.,.

where Z.r is negative. Taking into account the fact that

f.r, the intervals of positive and negative signs except

joined so that

.]: ]f.r.r] l/3d:r

(2.28) _(.r) = j .,,,+0
.r: + I -- 0

E J lf.r.I '/:_dJ"
j :rj+O

d'

.r7

,r,7

f lf..,li/ada"
x

given by Eq(2.26) is strictly positive in the interval

the same formula Eq.(2.27) retnains valid for positive

for the inflection points of the function f(.r) can be

V.r :z ¢ atj,

where xj are the inflection points of f(m). To add the int](!ctioil points Z.,.(mj) = (i to the above integrals

special consideration is required.

Let a:0 1)(, a point of inflection of the flmction f(x), i.e. fz,(m0) = 0. Note in passing that if we modify

the flmction f(:r) by adding an arbitrary linear function the optinial grid Eq.(2.26) remains unchanged.

Furthermore, if the fimction f(m) is linear in the whole interxml [a, b] then from Eq.(2.25) it follows that

_.,. = 0. Vm E [a. b]. It results ill that the grid step size in the physical donlain Am = ._X_/_._ tends to infinity.

It can tie interpreted as to apl)roxiniate the first derivative of the linear fllnction exactly an arbitrary large

grid spacing can be used. Expanding f,.,. in a Taylor series about x = .re ill Eq.(2.26) and assunling that

f,..,..,. (:r0) ¢ 0 yMd

f,., (:r) = .f.,.,..r(XO)(m - a:o) + O((:r - :r0)'-')



Substituting the above expression in Eq.(2.26) and neglecting both O((:r -are)2) and higher order ternls giw,

(:,'.= Cf .... (.r.)(. - *0)(2.29)

Letting .r --+ a'(j we have

_,(a'0) = lira (Cf***(zo)(a'- xo)) L/a = 0

As nowd above, this kind of grid degeneration when the metric coefticient{.,, vanishes does not impose, any

restriction on the grid step size ;It the inflection point. Therefore, in the vicinity of the inflection point t,ht,

original second derivative f,.,. can tm modified as

(2.30) f,.,.(x) = { Ifx,I,lf. ._,,}-'+_ -' tf,..,.]lf""l<>-e•

where e is a small positive parameter. From the above consideration it follows that for an arbitrary f E

C 2[a. b] the optimal mapping minimizing the leading truncation error term globally is

,r

J'(f.,,.)l/adx
(t

(2.31) _(x)- I,

.f(L.,)'/:'d.

To estimate the asymptotic truncation error of the second-order difference expression for f. on the

optimal grid Eq.(2.26) we rewrite Eq.(2.S) including the third-order terms

(2.32) Lh(fx) fz + C.)A("f_¢_ + C3A(3f_ 4}= + O(_M4).

Linearizing Eq.(2.32) and collecting the terms of O(A_") and O(_ _) the first two leading terms in the

trllncation error are

Since the first term on the right hand side of Eq.(2.33) is vanished on the optimal grid defined by Eq.(2.26)

the asymt_totic truncation error becomes

(2.34) r.,(x) =q-x_:'_ *g L'_*_-r''_'-4"fe] •

To determine the expression in the Sqllare brackets we differentiate Eq.(2.14) written for p = 2 with respect

to _. Thus,

(2.35) f_'/:re + fe_:"_ - fz_:r<_ - x_"tf_ = 0.

Resolving Eq.(2.14) with respect to feee and substituting it in Eq.(2.35) give

11 . 9 ,

(2.36) f_tla" e - a< j_ = a,_eea-gJ.,.,..

[7sing Eq.(2.36) the leading truncation error term on the Ol)tiinal grid Eq.(2.26) can be recast as

(2.37) T_,(:r) = Ca:.X_:*.r_e_f**.



Taking into ac(:ount the fact that for the optimal grid Eq.(2.26) holds, x_ can l)e represented in terms of

the function f(x) and its derivatives as follows

3_._..,. - _x.,..,.(,,. 5 f._.,.,. - 3 f,})) fr:,.

(2.38) x_ = _,_I = 9C:_f.:,!,.

where C is tile integration constant in Eq.(2.25). Substituting Eq.(2.38) into Eq.(2.37) the leading truncation

error term is given ])y

•, (.1) g
(2.39) T.)(:r) = C:__k( :_°f';'_" - 3£,, J.r,.

3 ')
9C f,L.

This'formula is valid for all points fi'ozn the interval [a, b] except for the inflection points of the fimction f(x).

Let us estimate the leading term of the truncation error at a point of inflection :r_ : f.r.,.(.ro) = O. Since

we have modified the second derivative f.,..r in the neighborhood of the inflection point Eq.(2.30) th(, s('('ond-

order term in the truncation error does not vanish. Substituting Eq.(2.30) into E(1.(2.33) and neglecting

higher or<ter terms we hay(,

Letting x _ x0 yields

(2.40)

T._,(:r0) = C.,-X( _
-f_.,.f,..,..,.(f,,.,.)-"/:_ + (f,._)'/:_f ........

f.F ;r

r_(.ro) = C.,A( _L..,..,.(.ro)
(e/2)_/:_ "

Equation (2.40) shows that, locally, near the inflection point only the se(:ond order of approximation can be

obtained on the optimal grid. Note that it is not the case if the filnction for) is linear because then, any

second-order accurate approximation of f_ and x_ in Eq.(2.5) on an arbitrary nonuniform mesh gives us the

exact value of f.r. Bv virtue of the fact that the num|)er of the inflection i)oints is finite the L.z norm of the

second-order accurate approximation of f.,. on the ot)timal grid should t)rovide superconvergent results.

In regions where the flmction f(x) is discontimmus the above reasoning is not vali(l since the first an(t

higher derivatives do not exist there. In contrast to the inflection point in the vicinity of local extrema of
~

f(x), where fxx achieves its maximum value, the fraction in Eq.(2.39) becomes very small s() that locally,

even a higher order of accuracy may l)e obtained.

Remark 2.1 It can readily be checke(t that stan(tard grid adaptation criteria such as the arc length of

the function f(x) and the second derivative fx_. do not globally minimize the leading term of the t rmlcation

error. Actually, using the arc length grid adaptation criterion the following grid point distrilmtion is obtained

o

(2.41) d:r)- b

.f vrf+
_t

Substituting Eq.(2.41) into Eq.(2.33) yields

(2.42) T2(x) = C2-.k_ 2 -3f.,.f._.,. + (1 + f'-/,)f_,_.,.
(1 + f._)_

The comparison of Eq.(2.42) with the leading t(,rm of the truncation error obtained on a mfiform grid. which

is

It7l , 1 ")
(;') = (22.__'f:r.,._. ,



shows that this grid t)oint distribution may iinprove the accuracy locally ileal' stee l) gradients of the flmction

f(.r). At the same time, in regions whei'_' f** is inuch grater than f.,., e.g. near local extrenm of f(a'), the

actual order of approxiInation nlay deteriorate to one or even be worth.

If instead of the art' length adat)tation criterion one redistributes grid t)oints in accordance with the

second derivative f,r.r the leading term of tilt, t rimcation error is

(').43) T.,(a') = -C.,',( -'2f_*
- fL.

As it tbllows f'ronl the above forniula in regions where [L.,] < v/_ the local truncation error Eq.(2.43) is

always gI'at(,r than the asymt)totic truncation error on a uniform grid.

Summarizing what has been said above tile following <'onclusions can 1)¢, <h'awn. On the one hand. the

standard grid adaptation criteria do not provide the supereonvergence. On the other hand, although, the

standard grid adaptation techniques nlay locally iiiq)rove the accuracy of calculation the global trtmcation

error nlay 1)ecome even larger than that obtained on the corresponding unifornl nmsh. Despite the fact that

the above consideration has been t)erformed for the second-order discretization the sanle conclusion (:all be

done tbr higher order schemes.

Remark 2.2 We shall now I)riefly describe an alternative way of the solution of Eq.(2.21). Integrating

Eq.(2.21) by parts and neglecting the ()(.5_) term oil the right hand sid(, yi(q(l

(2.44) fz_x< - fg:r_ = C,

where C is a ('onstant of tile integration. The above equation is closed by using the boundary conditions

Eq.(2.2).

In order to find the unknown constant C we rewrite Eq.(2.44) in the following forIn

(2.45)

Taking into a('count the fact that

0•r_b_ = C,

f*" .r<0_

Eq.(2.45) is reduced t.o Eq.(2.25) and the constant C can easily be deterinined, that gives

3

(/,:)(2.46) C = ,.,) t/:_dx

The boundary vahle problent Eq.(2.44),(2.46),(2.2) should be solved nunlerically. If at seine point fz and f((

are equal to zero sinmltaneously Eq.(2.44).(2.46) is (legen(,rated. Tile t)roblein can I)e ovei'(:onle by Inodillving

Ole derivatives f_, f_,_ an(l the constant C as fi)llows

k_L_ L
_.,. (Cf,.,.)l/a

= 3(f**)- - f, xxL.

_!_ d_/:' (.g.?/:'

l 0



(? = ,..,.) l /a d.r ,

where f,.,. is given by Eq.(2.30),/,. and ]**.,. are calculated by differentiating and integrating/,..,, with reslm('t

to .r, accordingly. Sill(:(, the flln(:tion fr.r is strictly positive in the entire COml)utational domain the first

derivative .f_ is a positive fllnction as well. It makes the me(tiffed equation flllly consistent with Eq.(2.31).

It should I)e stressed that there are several differential forms of the optimal grid generation equation.

For example, instead of integration of Eq.(2.21) 173'parts we may consider Eq. (2.23) as a differential equation

for the optimal grid point distribution. Since each of the difliwential equations has its advantages and

disadvantages at the present time. it is difficult to say which one of them is better.

2.3. High-Order Approximations, p _> 3. If f_ and :r_ are apl)roximated identi('ally by a third-order

accurate formula the optimal grid generation equation written in operator form in the physical space is

(2.47) _ f - f* O.rJ .r = 0.

Performing the indicated differentiatkm we have

(2.48) f,.,. (15(:_, - 4(,_,.,.,,.) + _.,, (-O_.,,.,.f,._.,. + (.,.fl _'') = 0

Although, the above equation is much more compli(:ated than the analogous one derived for the second-order

discretizations Eq.(2.24) we shall construct the solution of Eq.(2.48) in a similar form. On the one hand,

a solution in the form of ( = .q(f_), where g is an arbitrary flmction of f.,, is not approt)riate since in this

case the f.}41 term in Eq.(2.48) can not be eancele<t. On the other hand, if a solution depen(ts on f_.r, or

higher <terivatives of f(:r) it giw_s rise to the ftnl term in the truncation error which is not canceled as well.

Therefore, we shall seek the solution of Eq.(2.48) in a form similar to E<t.(2.25 )

(2.49) {.,. = C(f,:,.)".

Substituting Eq.(2.49) into Eq.(2.48) the leading truncation error term can be written as

C:_.__ :_
[,_(2- lla)(fx**)-' + (4o- 1)f**fl, 4)](2.50) T.,,(:r)- (f.,.._)t+2_, .

In contrast to the second-order discretization, for the third-order approximatioIl the leading term of t tw

truncation error does not vanish at any (_= const. Assuming that the parameter (l(:r) is a tim(lion which

weakly depends on x and setting the leading truncation error term equal to zero the following quadratic

equation for (_(:r) is ot)tained

(2.51)

The solution of Eq.(2.51) is

(2.52)

with

,_(:r)(2 - l la(.r) )(f,.,.,. )2 + (4_,(:,') - 1) f,..,, fl. 4) = 0

1
(1 + 2,'(:r)-4- v/1 - 7,'(a,) + 4,'{.,') _ )

(_1,'2 = "il \ /

f r{,l )
d' .t"Jd"

r(.) -
(L..x)-'

11



Without loss of generality it is assumed that f*** ¢ 0. If f*** = 0 then the solution of Eq.(2.51) is n = 1/4.

Note that the fimction _(a') should be positive in the entire physical domain otherwise, the mapt)ing Eq.(2.49)

with n < 0 concentrates grid points where f(a') is linear and makes the grid very coarse where the second

derivative jr.,..,,is large. Since the above analysis ix wdid if the function (_(:r) slightly depeIlds on x we construct

n as follows

(2.53)
{ _(l+2r+x/1-7r+4r"), r_<0

(t(F) _- ___1.3- 18 "' 3 -- ') 7+_r-- 55r+ _, O< r <
7

1 (1 + 2,'- x/l - 7,'+ 4r 2) r > :i

where the polynomial in Eq.(2.53) has been chosen so that a(r) is a contimumsly differentiable flmction of

r. A plot of n versus r is shown in Fig.2.1. As can be seen in the figure, the function n(r) is practically

equal to 1/4 in the whole range of r except for an interval -1 < r < 3. Although, a(r) ix quite smooth tile

function _(.r) lllay be non-smooth because it depends Oll f.r.r, fa'.rx and fj.lt which are calculated numericalh"

and Illay therefi)re be very oscillatory. In nmnerical applications the fllnctioll (l(X) should be smoothed to

meet tilt' requirements used for tile derivation of Eq.(2.50).

0.5
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0,1
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FR'. 2.1. Parameter _ for a third-order accurate di,scretization.

Such a choice of n(a') provides that the leading truncation error term is approximately equal to zero

in the entire physical domain. As it follows fl'om Eq.(2.49), the second derivative f.,., must be a 1)ositive

flmction on [a, b]. Note that a general protmrty of both Eq.(2.47) and Eq.(2.14) is that if (.,. is a solution

of Eq.(2.47) then -(.,. is a solution of Eq.(2.47) as well. The same is true for the function f(x) and its

derivatives, i.e. if we substitute/** = -f.,..,. into Eq.(2.47) we get the same equation in terms of/.r*. Hence,

the second derivative f.r.r in Eq.(2.49) can be replaced with Eq.(2.30). Thus, if f_ and a:_ are evaluated by

the same third-order accurate formula the optimal grid point distrilmtion, which minimizes the leading term

12



of the truncation error in the entire ('omt)utational domain, is

.r ~

(2.54) ((;r)- ], ,

J(]r r)"(-",L,,
(t

where L,-, an(t (_(x) are defined 1)y Eq.(2.30) and Eq.(2.53), respectively.

From the above analysis one can see that the same strategy used for the third-order approximation can

be applied to higher order discretizations. Actually, the leading term of the trmlcation error for an arbitrary

pth-order approximation of f.,, is

CpAU' [_ j,+l)
(2.55) T,,(() - x_ _,J_ a( - j_t'-x(1'+1)_)

Accomlting for the following relations betw(,en the _- and .r-derivatives written in operator form

0 1 0

0_ Lr 0:r

the truncation error can |)e transfornled into the physical space as follows

(i1o] )(2.56) r,,(a:) = C,,A_P(_. _. _ f - f_ [(:,. OxJ :r .

Expanding the power of the derivative operator

[, _, ]"+' ,_*'_-LK_J(2.5;)
"I" r, +r, ,,i [,= _ ' z_.,. L_J :z:L_J _, '" L_J :r L_j o.,.

it can 1)e seen that the term with L. in E(t.(2.56) is (:anceled and therefore tim highest derivatives of ((x)

and f(x) in the truncation error Tp(x) are (_i,). and j_r(P+l), rest)ectivelv.. Assuming that on the optimal grid

the leading term of the truncation error is of the order of O(A() we shall seek _(m) as a function of f(x)

and its derivatives. ComI)aring the highest derivatives of _ and f one can observe that if _._ = g(f, fx)
r(.lthen the term f._p+l) in Eq.(2.57) is never canceled while if _.r is a function oI j_. , n _> 3 it introduces the

uncan('ellable f(,,+p-1) term in the truncation error Tv(:r ). In a similar n).anner to the first-, second-, an(1

thir(l-order approximations the optimal grid for the pth-order accurate discretization is sought in the form

of Eq.(2.49). Substituting Eq.(2.49) into Eq.(2.57) the leading truncation error term I)e('omes

( )(f.,..x)P_' [i - a(p + i)] fJ.p+l ) + o_G((,, f.,.,., f.,._.,.,..., f.l.v))

In the above formula it has ah'eady been taken into account that the second term on the right hand side is

proI)ortional to (_. This is no surprise since for n: = 0, which correspon(ls to a mfiform mesh, the as.wnt)totic
_-{ p+ 1 )(-' Xfl'r(J'+1) that is why all the terms in Eq.(2.58) excel)) for j._.truncation error Tp(m) is reduced to .p_.. j,,,

hay(, to be proportional to _. For examl)]e, for fourth- and fifth-or(l(,r discretizations the lea(ling truncation

error terms ot)taine(l on the Ol)timal grid Eq.(2.49) are

C,)-X( 4 fj.r,) -l()n(1 + 5(_)_ + 5(9(_ 1) _'' _(2.59) Z_(x) - (f.,._.).,<, (1 - 5n) + n - --.'. ' - fx,r
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and

_( { tr:'l'T-,(.r)= '_ ' (1-6o)f.lY)+(_ (6+493+196o_+274o:_)_ -
(2.6o)

) [31 2 ['11 13) (51 ((I,I))2

-(7+97(,+421o_)(f'[f].:) +3(273-2)_+2(26(,- 1)_}),

r(,sp(,('tiv(,ly. As it follows froln Eq.(2.58) at an.v o = con.st bottl terms on tile right hand side do not vanish

simultaneously. To nfininiize the leading term of the truncation error tile following procedure is proposed.

At each grid point the paranleter o is found as the solution of the nonlinear equation T((i) = 0, whMl is

solved by the Newton's method. That choice of o provides that the leading truncation error term is vanished

on the optimal grid. Since the above consideration is valid only if a slightly dellends on x the function (_(x)

has to tw smoothed ill mmmrical applications.

Remark 2.3 If p --+ +_c, i.e. the order of approximation is infinitely large the leading term of the

truncation error Eq.(2.58) is vanished for _t --+ 0. In other words, the higher is the order of approximation

used to evaluate f_ and .r_ the more mfiform is the grkt which minimizes the leading truncation error term.

Ill the limit of infinitel.v high-order approximations a unifbrm grid is optimal in the sense of mininfization of

the asymptotic truncatioIl error.

3. Grid Adaptation in Multiple Dimensions. The two-dimensional trmlsformation of the first

derivative is given by

(3.1) f.,. - y'I_ - g_f'_

where the .lacobian of the transformation is

J = x_y, I - x,ly _.

Approximating the _ and 1/ derivatives ill Eq.(3.1) by some pth- and qth-order finite difference formulas,

respectively, we get

q (q+l) Cpi_._pf_p+l)(!h, + Cq.5'I .q,, )(f_ + ) - (Y_ + Cv.A(vY_v+[))(f,, + Cq..-_1]q f}l q+l) )
Lh(f.) =

(:_..+ G,_Xp,,.('+_)_. _ )(:q,,+ G_,/@, q+l)) - (,,, + G_X,l,,£,'_+'))(ue + C,.:_X{,,:q_"+l) )
(3.2)

In the al)ove expression it has already been taken into account that the inetric coefficients x_, y_ and x,, '.q,/

are evaluated by the sam(, finite difference operators which are used for calculating f( and f,i, respectively.

In view of the fact that tile mapt)ing used is nonsingular d > 0, the denominator of Eq.(3.2) can be

linearized that yields

'[ ]Lh(f.,.) = 2 !lvf_ -- Y_f,, + C.,,--_v(Y,J_ p+I) - Y_l'+l) f,t) + Cq2-_llq(f(!lll q+l) - .tl(f}t q+l)) x

(3.3) ]1- _' iv+l) (p+].1 I!]Okr ( -- ,I]{ }.r,i ) __ _(3, ._]}/q+t) __ [q./,./:l:+l)) + ()(.._p+l,__l]q+l)

Multil)lying out the terms in the sqllare })rackets and neglecting higher order terms tile leading term of

trullcatioll orl'or be(:Ollles

I{G__,[.-<_+')-,/7'+' .. ,,,+,) ,,+, ]r.._(&_#) = 7 tv,o_ .. lf,j_ J.ty,:a - r,d& ) +
(3.4) r {q+l) , (q+l) (q+t

- (:r(y, I - y_x,j,,j.',',+')-:.. '>]}
As ill the 1D case, tile truncation error Tv._ consists of two different parts, one of which arises from the

(,valuation of the nlotri(' coetficients x<, y_,.rv, !& and the se(:ond one o(:cur,q due to tim at)proximation of f_

+()( A( v+ ] , A_I q+' )

1.1



and f,j. From Eq.(3.4) it follows that if the absolute value of the first expression in the square brackets is less

than O(_X() and the abolute value of the second one is less than O(Aq) then the glol)al truncation error is

O(A( v+l , -Mfl +l ) rather than O(A_ v, AT]q). Thus, to increase Ihe order of the finite (tifferenee apt)roximation

Eq.(3.2) by one gh)l)ally grid points shouhl be redistril)uted so that the following equations hold

....":'+":,,) +
(3.5) [_ (q+l) : - '....'+")t _ / f \

-.j_._ ,_ + ()(Asl)J='

Removing the parentheses and rearranging the correst)onding terms E.q.(3.5) can 1)e redu('ed t()

(3.6) Y, .f_v+l) r (v+l) _ f,..r _,+l)
/,r(q+l) . (q+l) " q_-l) /

Y_ [.,, -- L, IY,_ - f,,.a ,l j -- O(A1I)J

Note that a re(lu('tion of the ()(A() and £)(_Xq) terms in Eq.(3.6) decreases the truncation error on the

el)ritual grid.

The at)eve equations can t)e treate(l as the Ol)timal gri(t generation e(tuations in the sense of nfininiization

of the leading truneatioll error term. It should be noted, that if y_ = 0 in tit(' entire ('onllmtational (tolnain

Eq.(3.6) is reduced to Eq.(2.14). At the same tinio, if the y coordinate does not depend on t/, i.e. y = y(_)

Eq.(3.6) is simplified to

(3.7) x,J/}/q+l) - J,#"f'_.(q+l),l = O(A'q)x_,

that can t)e treated as an analog of Eq.(2.13) in the 7/ coordinate.

Another very useful t)rol)erty of the optimal niat)ping is that Eq.(3.6) are invariant with respe('t io both

translation and stretching of the x, !! and _, _1 coordinates. Sunmiarizing the above t)roperties of Eq.(3.6) one

may conchide that the 2D optinlal grid generation equations are fully consistent with the 1D counterpart

Eq.(2.14).

The t)resent al)t)roach can directly tie extended to three diniensions. Actually, the three-diniensional

transforntation of the first derivative is

(3.8) f.,. _ zUS, d- y_z.,j f_ +

where the .]aeo[)ian of the mapping is given t)y

.1 ,1

,J = :r_y,_z_ + x_ycz( + .cc. lq_zT/ - .c(yc, z, I - a:,ly(zc " - :r(y71;_.

With pth-, qth-, and rtti-order finite difference approximations for the (-, *k, an(t (-derivatives, respectively,

we have

(5_ zd-,d/ - _i<!i5,_z )6_f + (dUtgi_z - 6<zdU./)6,ff + (5,z6_y - gi,dldZZ )dcf
k#, (f,,) =

6_.r6,_ !l_: z + 6,/a:(_; y 6_ z + 6_ :r(_ y 6,_z - 5_ x_(!j(_,_ z - ¢$,_:r(_ !16( z - d<x/i,_ yff_ z

(3.9)

wliere the differential operators ($_, ¢$,, and d< are defined by

÷()(__(s'+l _.M/u+I A("+i),

D

,$_ = ,_ + C_,AU' a"+'77,{v+ i
0 ''

(3.10) d,_ = _ + Cq_._,qq_

_,) 0,'+1

5c = _-7 + C,.AC _.

Here, Cp. Cq, and C,. are constants (let)en(lent on t)articular pth-, qth-. and rth-order finite (litference

at)proximations which are al)t)lied to (tiscretize the _-, 0-, an(1 (-derivatives, accordingly. In Eq.(3.9),(3.10)
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it has ah'eady t)een accounted for that the metric coefficients are al)t)roximated I)y the same finite (tifference

expressions which are used for evaluating f_, f,i, and ft.

Having linearized the fraction in Eq.(3.9) the leading truncation error term is written as

(3.11)
T,.,,., ¢_. '/. () =

_vhol'O

(3.12)

(p+l) z

F_j,+l} = f_,+l)(Z_!h_ _ !l_z,_) + !l_v+l)(z,ff_ -- z_f,j) + z_ ul<f_l -- !Juf_)

p,I/,+, ) = f_q+,l(z_ y¢ -- zg y¢) + u}/q+l)( 2(f_ - zz f¢) + z}ff+tl(.qz f¢ - !t<f_)

. (r+l)_ r -- _(r'+l )_ r/e.l,+,I, = ._f!"+J )(z,t.qZ - .q,lz_) + .q¢ tz_J,i z,l.fz) + "< Lq,H_ - !l_f,j)
.,(P+I ) ,(p+l )l (p+l)

,]_v+l} = "_ (z(.q,j - !l(z,_) + !1_ tz,tr _ - z_x,_) + z_ (y_.r,j - y,l:r_)

= .t,_ )(zcy( - z(y_) + 1t,_ iz(:,'¢ -- z_.r_:) + )(//@re -- !lCr¢)

.]!'+_) = rI-"+_)(z,_q_ - y,_z_) +!1_ ''+_ _"+_ '_ a -

Similarly to the 1D and 2D cases described above the leading term of the truncation error Eq.(3.11) can be

divided into two parts. The first part, which also exists on a uniform mesh, is clue to tile approximation of

f_, f,_, and ft. The second part, which is vanished on a unifi)rm Cartesian mesh is caused by the evaluation

of the metric coeffMents. From Eq.(3.11) it is apparent that if a grid is constructed so that the first term

in the s(tuare t)ra('kets is of the order of O(_), the secon(l one is of the or(ler of O(.MI), and the third one

is of the order of O(.5() fl)r all ( _ [0, 1], *1 _ [0, 1], and ( _ [0, 1] then the global order of at)t)roxinmtion

of the different'(' operator Eq.(3.9) in (, q, an(l ( on the ol)thnal grid is increased from p, q, and r to p + 1,

q + 1. an(l r + 1, rest)ectively. Hence, in the sense of minimization of the leadii_g truncation error term the

grid adaptation ('riteria are

(3.13) If'_ 1'+1) __ fx,]_ p+I) __-- O('_k_),]

(3.14) ,_'t(/q+l ) __ f.,.,]_/_+, t = O(_q)J

(3.15) />!"+_) _ r ]("+_) = O(A()J.

Note that the above equations are not a system of equations and can be considered separately. If it is

necessary to imt)rove the accuracy with respect to the _ coordinate alone a grid should be generated so that

only Eq.(3.13) holds. However, if it is desirable to increase the order of approximation of f.,. by one in tile

_. q. and ( coordinates simultaneously then the grid has to obey the system of equations Eq.(3.13) (3.15).

As in the case of two dimensions the 3D grid adaptation criteria Eq.(3.13) (3.15) can I)e simt)lified. After

the sul)stitution of Eq. (3.12) in Eq.(3.13) (3.15) and coi_siderable algebraic manipulation the grid adat)tation

equations can 1>(,rewritten in a very compact form

(:<v,, "+', " "+1) :"('+'>"- - :.r_ - ..:/_ - _:z_ j = O(-M).I

(3.16) (!lCZ_ : (q+l} . (q-+-l) .e (q+l)l- a_:a,_ - J.q!l,_ - JzZ,_ _ = ()(_1).1

(:,t.q_ __ y,12.()[/_,'+l) . (r+t) r (,'+11 r (r+l)l.r,,.x_ - ]:,!/< - ]:z,: j = O(_X(),l,

where f.. f:_, and f: are the first derivatives with respect to tile x, y, and z coordinates, respectively. One of

tit(' characteristic features of the ahove e(luations is that they do not det)end on the coefficients Cv, C u, and
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C,.. Consequently, if in each spatial direction tilt, metric coefficients and the frst derivatives of f(_, 71,4) are

evaluated consistently t)3- some hybrid finite difference operators then tile grid adaptation criteria Eq.(3.16)

can be applied in the whole computational domain regardless of points where the hybrid scheme switches

fl'om one approximation to another. A comparison of Eq.(3.16), Eq.(3.6), and E(t.(2.13 ) shows that the 3D

grid adaptation criteria Eq.(3.16) are reduced to Eq.(3.6) if z( - ~_/ - 0, z 4 # 0, while if in addition to these

conditions we require that y£ -- Y4 -- 0, y,_ # 0 Eq.(3.16) are redut:ed to the 1D optinml grid generation

equation Eq.(2.13). In a similar rammer as Eq.(2.13) and Eq.(3.6), it is easy to prove that Eq.(3.16) are

invariant with respect to stretching and translation of both the physical and computational coordinates.

As it follows Kom the analysis t)resented in the foregoing section the grid adaptation equation does not

assm'e that the coordinate mapping obtained as the solution of Eq.(2.14) is not singular. Since Eq.(3.16)

is converted to Eq.(3.6) and in its turn Eq.(3.6) is reduced to Eq.(2.14) if the dilllellsioll of the spat(, is

det:reased by one, the same singularity may o('cur in two and three dimensions as well.

Equations (3.6) an(t (3.16) have to be closed by (:orresponding |)oundary conditions. Since these equations

are (p + 1)th-oMer partial differential equations p + 1 boundary conditions should I)e imt)osed at each ('out)le

of the ot)posit(' boundaries (i.e. (= 0 and (= 1; _/ = 0 and i/ = 1; ( = 0 an(l ( = 1) to find the mfique

solution. However. at each bomMary w(, have only one I)oundary (:ondition. For example, in the 3D case in

the _ coordinate we have

(3.17) _(x,y,z) = O, _(:r,y,=) = l.

In other words E(1.(3.6) and E(1.(3.16) are not closed. The situation t)ecomes even more uncertain when

only one of t h(' grid adaptation criteria is used. However, this uncertainty gives us additional degrees of

freedom and at the same time, it is conceivable that there exists more than one optimal grid satisfying the

criteria Eq.(3.6) or Eq.(3.16). From this standt)oint both Eq.(3.6) and Eq.(3.16) should be treated as the

grid adaptation criteria rather than the optimal grid generation equations.

One of the most general structured grid generation strategies is |)ased on the variational ap])roach

proposed by Brackbill and Saltzmaml in [17]. In this method a grid is generated as the solution of the

minimization problem. By forming the variational principle using a linear (:ombination of tile integral

measures of smoothness, orthogonality, and adal)tation, a system of elliptic equations is derived. The new

grid a(lat)tati(m criteria can be in(:ort)orated into this approach by constructing an integral measure of

adat)tation so that the Euler-Lagrange equations associated with the minimization of this integral alone give

us Eq.(3.16). On the one hand, the minimax princit)le guarantees that the coordinate mapt)ing obtained as

the solutioll of this minimization problem is not singular. On the other hand, the new grid adat)tation criteria

t)rovide that the leading term of the truncation error is minimized so that the finite difference apt)roximation

Eq.(3.9) calculated on tile ot)tiInal grid exhibits superconvergenee properties.

R_mark 3.1 1:1 spite on the fact that the present analysis has been l)erformed for the first derivative

f.,. it (:an t)e directly extende(t to an equation or a system of equations, which can |)e represented as

(3.18) L.(x)= d(_).

For example, for the steady skate 1D Burgers equation written in (:onservation law form w(' hay(,

(3.19) 0 (2 Ou,o_--" - t,_.,. ) = (),

where I_ is a t)ositive constant. A comt)arison of Eq.(3.19) and f.,. shows that f)r the Burgers equation tile
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optimal grit[ can t)e constructed using Eq.(2.54) with

(3.20/ fix) -
2 P O--x"

It shouhI be pointed out that the above etmclusion is valid if the second derivative u:_._. = (u.,.L. and the

convective term (u2/2), are apprt>ximated consistently.

Tilt'same approach can be applied to the Euler mid Navier-Stokes equations. Tilt, 1D Euler anti Navier-

Stokes e(ltlatiollS ('all l)e writteu ill conserx'atioll law f'orm as

OF
(3.21) 0x 0,

where F is the inviscid flux Fi for the Euler equations and Fi - F,., where F,, is the viscous flux. fl)r the

Navier-Stokes equations. As it tbllows ti'om Eq.(3.16), any component of the vector F can be chosen as a

flmction with rt;spect of whM! a grid is adapted. Although, that choice provides increase in accuracy for

this t)articular vector component but it may not result in decrease ill the truncation error for tilt' remaining

vector components. In fact, as there are COml)onents of the vector F as many the ot)timal grids can be

generated. Since the difl'erent vector components may have strong gradients and local extrema in different

regions of the t)hysical domain this kind of grid adaptation is not effective. If this is the case the flmction

f(x) can be obtained by using the method of least squares. Because of the oi)timal grid generation equations

are invariant with rest)ect to stretching of tilt, function f(x) the vector COUlpOllelltS Y_,, it = 1._\" ('all t)e

normalizetl as

(3.22) /?. (x) - IF" (x)l
max Ir,_(x) I "

d'

It results in that all of the vector components are of the same order and, consequently, make prot)ortional

contributions to the function f(x). The resulting flmctitm f(x) is obtained as the solution of the following

minimization t)roblem

1 N

(3.23) E E ( I/'' (x') - f(xi)) _-+ rain
i=0 n=t

in the least square sense. Tile function f constructed in this fashion allows one to generate a grid which is

opt itual for the whole vector F rather than for its particular component. Note that the power in Eq.(3.23)

should be chosen in accordance with tilt, power of the Lt. norm in which the solution of the Euler or Navier-

Stokes equations is sought.

4. Results and Discussion. To validate the applicability and efficiency of the new method several

1D anti one 2D test examples are considere(l. For each 1D test fllnction five series of cah:ulation on different

grids with the same number of grid I)oints have been executett. Tilt, first one is done on a uniform grid.

The second one uses the stau(lard grid adaptation criterion based on the art' length or the second derivative

of the test flm('tion. The third one is I)erforined on the optimal grid obtaine(t as the analytical solutioil of

E(I. (2.14). The fourth one eml)l()ys the oi)timal grid Eq. (2.54) gen('rate(1 mmmrit:ally by using the f()ll()wing

at)proxinmtion for the seeon(t (terivative

hifi+l -- (hi + hi+l )fi + hi+l fi-I
(4.1) (f_..,.)i = hi = :l:i - xi-l,

hfl_i+j (hi + hi+l )/2

which is reduced to th(' se('ond-order three-l)oint ('entral al)proximation of f_..,, if an equisl)aced grid ill the

t)hysical domain is use(l. The integrals in E(1.(2.54 ) is computed using the tral)ezoidal rule integration. As
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a result of this integration tile strictly increasing function {(x) is obtained which is then reversed by using

a third-order a(:curate piecewise st)line interpolation. The fifth calculation is also executed (111 the unif<)rnl

grid, however, instead of a pth-order apt)roxinlation a (t)+ 1)th-order accurate dicretization is at)t)lied to

calculate both f< and .r_. At each boundary one-sided pth-order differences are used for f_ and x_.

In order to estimate the accuracy of the method tit(, pth-order finite difference al)l)roximation of f.,. is

compared with the exact value of the first derivative calculated at the same grid node in the L., norm. The

order of approximation is estimated on successively refined grids the coarsest one of which contains 20 ('ells

and the finest one has 2560 cells.

4.1. 1D Test Examples. Second-order approximation, p = 2

The first test examt)le is evaluation of the first derivative of f(x) -- :r'". 0 < :r _< 1 by using a see(re(l-

order central differences fi)r f_ and x_. Wh('n m is sufficiently large this function has a l)oundary layer of

width O(1/m) near :r = 1. F(/r this test case the exact Ol)timal grid t)oint distribution defined 113"Eq.(2.21)

can 1)e found analytically, which is

(4.2) Xo,,,(_) = <_.

In contrast to [9] the new grid adat)tation criterion l)rovides the con('entration of grid nodes near the boundary

layer of the fimction f(x).

o
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------O-- Uniform, 2nd order
--l---- Numerical optimal

- + Analytical optimal
--_P_ Standard

Uniform, 3rd order
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Iog_0(Cells)

FIG. 1.1. Error convelyence for a second-order approximation of f.,., f(:r) = :r'" calculated on: 1) uniform grid, 2) optimal

grid generated numerically, 3) analytical optimal grid, _] grid adapted irl accordance with, th,c arc length criterion. 5) uniform

,qrid using third-order accurate discretization.

An error convergence plot for this test flmction is t)resente(t in Fig.4.1. As one might expect, the Le

norm of the truncation error calculated on a uniform grid exhibits the O(_X(_) convergen('e rate which is

consistent with the second order of accuracy of the central differences. However, the same se(:ond-order

al)l)roximation of f.r on the optimal grid Eq.(4.2) exhibits the convergence rate which is even higher than
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()(_:_). Although, the accuracy of L. obtained on the adaptive grid Eq.(2.26) with f_. evaluated I)y Eq.(4.1)

is slightly less compared to the optimal grid Eq.(4.2) results the order of apI)roximation is about 3.5. To show

the superiority of the present method over the standar(t grid adat)tation criterion Eq.(2.41) the truncation

error (:ah'ulated on grids adapted in accordance with the arc length of f(x) is also shown in Fig.4.1. In

spite of the fact that the standard grid adat)tation technique slightly improves the accuracy of calculation in

('Oral)arisen with the e(luisl)a(;ed gri(t point distrit)ution the eom, ergen('e rate is less than ()(_X_ '_). We want

to emphasize that the new grid adaptation criterion Eq.(2.26) provides not only super(:onvergent results, but

on the finest mesh it reduces the error I)y 6 orders of magnitude COml)ared to the uniform grid results.

An a(lvantag(, of the ('onsistent grid adaptation Eq.(2.14), which is base(l on the fact that the truncation

(u'rors du(' t() th[, at)t)roximation of fz and :r,_ cancel each other, becomes obvious when the oI)timal grid results

are ('Oml)ared with those obtained by using a third-order accurate at)l)roximation on a unifi)rm grid. Figure

4.1 shows that both the se('ond-order at)l)roximation on the oi)timal grid and the third-order dis('retization

on the unifi)rm grid with the same number of grid poiilts reveal th(, ()(..X_ :_) convergence rat(,. However, the

optimal grid results are about 1() :_ times more a('curate.

It should 1)e noted that the ot)timal gri(l Eq.(4.2) is essentially non-smooth and does not meet the

standard ('riterion of smoothness, which is t:t:_t/xg] < O(1) [18]. Furthermore, tim ot)timal mat)t)ing Eq.(4.2)

is singular at th(, point ( = 0 where x_ -+ _c. In spite on this fact, th(, above comt)arisons corrol)orate the

th(,(_reti('al analysis and demonstrate the advantage of th(, Hew grid adaptatioll crit(_rion over t h(, standard

apt)roa('hes.
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FI(;. -1.2. Error convergenct_ of a ._'econd-order hybrid approximation calculated with the cons'istenl attd incon.sistent dis-

cr'ctization.s of the mctric cocJJicient on th_ optimal and uniform 9rid.s.

Another very useful chara('teristic feature of tim new method is its generality in the sense that if a

single second-order hyl)rid dis(:retization is used for t)oth f_ and x_ the same optimal mat)i)ing Eq.(4.2)

lllillilllizes th(, h,ading trllllCatioil error refill. To (temonstrate this l)roperty the error conv(,rg(,nce of the
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hybridal)proximationobtainedontileuniformandoptinlal gridswith thesamemnnt)erof gridpointsare
depictedill Fig.4.2.Thehybriddifferenceoperatorisconstructedasfollows

")7s_(fi_-I-- f,-t), i even
(4at : '

1
\O</i =v-_7_(-3fi + 4fi+l - fi+2), i odd

The identical approximation is emph)yed for the metric coeflici(,nt a'_. A ('omparison shows that the global

order of the consistent approximation of f_ and :r_ is in('reas(,d by one on the same optiInal grid Eq.(4.2)

used for the non-hyl)rid aI)proxilnation. As has I)een shown in Section 2, the approxinlation of the metri('

coefficient and the first derivative f< should l)e the same otherwise tit(' optimal real)ping defined by Eq.(2.26)

does not minimize tim leading trun(:ation error term. To show that the (tiscretiztion of the metri(' (:oetfi('ient

t)lays a cru('ial role in reduction of tit(, truncation (,rror we altproximat(, x_ 1)y a two-point central different(,

expression in tit(' whole conq)utational domain and use the same hybri(t schtune Eq.(4.3) for fz. All error

convergence ph)t for this inconsistent approximation, which is also depi('ted in Fig.4.2, shows that if the

metric coefficient are evaluated in a different way than f_ the order of at)l)roxintation on the ot)timal grid

deteriorates to 2 as well as the truncation error increases t) 3, a factor of 10 a compared to the consistent

discretization results.

Tit(, second test flm('tion considered is

1
(4.4) f(x) = 0 < :r < 1.

(( ..... 1)x + 1'

A -2

D'J -4
0
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i i , I , , _ , I _ , J , I J , _ , l i i I I I I I I I |
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Uniform, 2nd order
Numerical optimal
Analytical optimal

--_'_ Standard

iterated

F](;. 4.3. Error converyence for a second-order approximation of f.,., f(x) 1/((e .... 1):r + I ) calculated on: I) uniform

grid. 2) optimal grid generated numerically, 3) analytical optimal grid, ._) grid adapted ir_ accordanc_ with the arc: length,

criterion, 5) uniform grid using third-order accurate discretization. 6) numerical optimal grid generated ileralively.

In the l)resent test examt)le the parameter m was chosen to t)e 5. This function has a boun(tary layer

of width O(m/(( ..... 1)) at x-- 0. For this function the optimal grid generation e(luation Eq.(2.14). which
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det)endson theorderof approxinlationratherthanona particulartypeof discretization,canI)esoh,ed
analytically,thatgiv(,s

(4.5) :ropt (_) -
e m - 1

It should bc emphasized that Eq.(2.26) yMds the same oi)tiinal mapping as Eq.(4.5). The optimal grid

Eq.(4.5) is the well-known (,xponential ('oordinate transfl)rmation, which is widely used in the litc'ratur(,

[1 l, [18] for solving boundary layer t_roblems. However, th( _ maI)ping Eq.(4.5) is optimal only for a st)ecial

('lass of flmctions su(:h as Eq.(4.4) and not el)ritual for other functions. Similarly to Fig.4.1 and 4.2, error

c(mv()rgen('(, ph)ts for the symmetric secon(l-(wder and hybrid diseretizations Eq.(4.3) are det)icted in Fig.4.3

and 4.4, rest)ectively. It is apparent in these figures that the error obtained on the ot)timal grid reveals

th(, ('onvergen('e rate of (t(--k(:__)) that is even higher than it follows from the theoreti('al analysis. The

optimal grid t)oint distribution constructed by the nUnlerical integration of Eq.(2.26) reduces the truncation

error by about four orders of magnitude COml)ared to the uniform grid results, lint it does not provide

the' same accuracy as the ot)timal grid Eq.(4.5). The accuracy (an be improved if the following iterative

proc(,dure is applied. Since the f._x at)proximation Eq.(4.1) d(,t)en(ts on the grid spacing in the physical

domain, the, sec'ond derivative can be update(l when the new grid point distribution is found. For this test

t)roblem about 15 20 iterations were needed to reach the convergence. No attempt was made to optimize the

iteration t)roc'ess. Referring to Fig.4.3 one can see that this procedure considerably increases the accuracy

and t)rovides practically the same convergence rate as for the analytical optimal grid E(t.(4.5).
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[:1_;. -1.4. Error convergenc_ of a se:cond-order hybrid approximatioTt calculat_.d wzth the consistt_nt and inconsistent dis-

cretizations of the metric coe_]icient on th_ optimal and uniform .qrid_.

Th(, iml)ortance of the metric coefficient (waluation is illustrated in Fig.4.4. Analogously to the foregoing

test ('ase. the inconsistent (tiscretization of f( aim x_ leads to decrease in both the order and accuracy of

the at)l)r()ximation. When the metric coefficient and the first derivative f_ are (,vahlated l)y using the same
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hybridoperatorEq.(4.3)timconvergenceratoobtainedontheoptinialgridEq.(4.5)1)econmsO(A(3).

From tile l)res(_nt theoretical analysis it follows that the new grid adaptation strategy may be quite

sensitive to th(, inflection points of t h(' function f(:r). In order to vorify this conclusion the following fimction

1

(4.6) f(x) - 36m'-' [sin(3mx) - 27sin(rex)]. 0 < x < 7r,

which has m inflection points has been chosen as a test function. D(,spito the presence of tim inflection points

whero f._._. = () it is possible to construct ttw optimal mapping analytically without using Eq.(2.30). It can

bo dono if the optimal grid Eq(2.26) is generated in each interval of constant signs of f.,._ separately. Thus,

w(, hay(,

1 j - 1 j
(4.7) xopt(() = 7r(j_ 1)+--arcc(,s[2j-2m(-1], -- <(_<--, j = 1,m.

III 111 Ill ll;

In nunwrical calculations t[to t)aram(,tor m was taken to b( _ 5. Th(' above optimal coordinate transfi)rmation

ob(ws Eq.(2.26) in the entire, physical domain oxcof)t for the infloction points.

-_ Uniform, 2nd order

--B-_ Numerical optimal

-1 + Analytical optimal
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FIe;. 4.5. Error conveTyence for a second-order approximation of fx, calculated on: 1) uniform grid, 2) optimal grid

generated numericalhj 3) analytical optirn, al grid, ._) grid adapted in accordance with the arc length criterion, 5) uniform grid

using third-oT_ter aecutnte discrelization.

Figures 4.5 an(] 4.6 m'(' analogous to Fig.4.1 and 4.2, a(:('ordingly. As one can see in Fig.4.5 th(' t)r('sen('('

of the infl(wtion points results in that the (:(mvergence rat(, is O(_ 25) that is lower than it is predict(,d

fi'om the theoi'(,ti(:al analysis. N(werth(qess, tit(' (tl)timal grid adaptation roduc(_s th(, truncation orror by a

factor of 20 compared to the uniform grid results. One of tim reasons of such a behavior is the fact that

high-order derivatives of t h(, function f(x) Eq.(4.6) arc wcll bounded that mak(,s tit(, approximation of f,.

on t h(' uniform grid suffMently accurate. The use of the standard grid adaptati(m criterion based on f,.._

E(t.(2.30 ) leads to deterioration of the convergen(:(_ rate to O(2_ t'5) and at tim sam(, timo. the L._, norm of

the trun(:ation orror is about 50 times less a('curato than the mfiform grid results. Figuro 4.6 shows that tit(,
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inconsistent approxiniation of f_ and x_ increases the truncation error by, 5 orders of magnitude conq)ared

to the consistent apt)roximation results calculated oil the optimal grid.

----G-- Uniform, hybrid
Optimal iterated, consistent
Optimal iterated, inconsistent

2.5

Iogl0(Cells)

["I(;..|.{i. E't'I'OF ('on?,t:Tyettc¢' of tl second-order hybrid app_v'J:imation calculated with the consistent and inconsistent dis-

crctizations of the metrw coc].[ic_ent on the optimal and uniform grid._'.

To gain greater insight into where the maximum error oceurs pointwise error distributions obtained

on both the uniform and optimal grids are shown in Fig.4.7. As exI)eeted, the truncation error calculated

on the optimal grid achieves its maximum values at the inflection points, while the error on the uniform

grid occurs at points where the third derivative lf_x.,.I is large. In contrast to the uniform grid, the most

accurate approximation of the first derivative f._ on the optimal grid is near the local extrema of f(x). For

delnonstratiilg the gain in accuracy in the vicinity of the inflection points clue to the use of Eq.(2.30) instead

of f_ a pointwise error plot obtained in this case is also presented in Fig.4.7. It is significant that the error

distritmtion obtained on the optimal grid is essentially nonuniform that gives an indication of the difference

between the present and equidistritmtion grid adaptation criteria.

From the practical point of view it is very important to improve the accuracy of calculation if the function

f(x) is discontilmoUS. In spite of the fact that the present analysis is not valid at discontinuities of f(x) it

Call 1)e used if the discontimlous fimction is apt)roxinmted by some sillooth one. In this test example the

fi_llowing smooth flmction

2ex [17 + 73(ex) _ + 55(ex) 4 -+- 15(ex) 6] 2
(4.8) f(.r) = + - arctan(ex), -1 < z < 1

157r(1 + (¢x)") 4 _T

is considered as a fitting of a step function. In this calculation the parameter e was taken to be 10 3 that

results in that the function Eq.(4.8) has a pronounced interior layer of width O(1/e) at .r = 0. This function

has been ehosen so that the optimal grid point distribution Eq.(2.26) can be integrated analytically. As in

th(' foregoing exanll)le, the singularity in the optimal mappiilg Eq.(2.26) due to the inflection point at x = 0

can be overcome by gonel'ating the optimal grid in the -(/.5 _< x < 0 and 0 _< :r _< 0.5 intervals separately,
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FI(;. 4.7. Pointwise error dzslribution for a second-order approxzmatiem calculated on the analytical optimal, numt:rical

optimal and corresponding uniform grids'.

that gives

' - 0 < ( < 0.5
(4.9) xo_,t(_) = v ,--' -

/ '>_-iVl+:_<,>(i__/, 0.5 < _ _< 1.

The error convergence of the symmetric second-order (tiscretization of f_. evaluated on the optinial grid

Eq.(4.9) is conll)are(l with results obtained by secon(t- and third-order approxiniations on a uniforni grid as

well as with the truncation error calculated on grids generated t)y using the standard Eq.(2.41) an(t new

Eq.(2.26),(2.30) grid adaptation criteria in Fig.4.8. Because of the internal layer thickness is comparal)l(_

with the finest grid spacing none of the uniforni grids considered can provide second-order results. For

the analytical optimal grid the convergence rate is of the order of O( A('-";' ). Although, it is less than the

theoretical limit the truncation error on the finest mesh (2560 cells) has been reduced by more than 5 orders

of magnitude compared to the uniform grid results. Since the standard grid a(taptation criterion Eq.(2.41),

which is widely used to improw' the resolution near stee l) gradients of the sohition, does not t)rovide the

cancellation of the leading truncation error term these results are al)out 2 orders of magnitude less accurat(,

than those obtained on the optimal grid Eq.(2.26),(4.1),(2.30) as is evident in Fig.4.8.

I coniparison of the hybrid approxiniation Eq.(4.3) on (tifferent grids and using diff(,rent approxiniations

for the metric coefficient a'( is pres(,nted in Fig.4.9. If f_ and :r< are evaluated identically the sanie ot)timal

grid Eq.(4.9) provides superconvergellt results, while if these approxiniations are different the convergence

rat(, is even less than O(.5(2).

High-order approximations, p >_ 3

For a third-order discretization the optimal grid generation equation Eq.(2.51) can not be solved ana-

lytically, however, the solution can be found in the approximate fl)rm of Eq.(2.53),(2.54). The same flmction
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FI(;. 4.8. Error convergence for a second-order approximation of fx, calculated on: 1} un_[orm grid, 2) optimal grid

genetz, ted numerically. 3) analytical optimal grid, 4] grid adapted in accordanc_ with the arc le_tglh criterion, 5) unifor*n grid

using third-order accurate dzscretzzation.

Eq.(4.4), which has been used ill the second example is taken as a test flmction. The first derivative f¢ and

the metric ('oeffMent are evaluated by a third-order accurate fornmla as

1

(4.10) (g_)_ = 6A-----_(-2.qi-] - 3gi + 6.qi+l - gi+2),

where ,q(_) is either f(() or x(().

Figure 4.10 shows error convergence plots obtained on the optimal Eq.(2.53),(2.54) and uniform grids

with the same numl)er of grid cells. Although, for the mapping Eq.(2.53),(2.54) the leading term of the

truncation error is at)proximately equal to zero the error convergence rate obtained on the optimal grid is

at)out ()(A(:_s) that eorrot)orates the theoretical results. Note that the same iterative technique used earlier

for the second-order apt)roximations can be applied in the present case as well. However, due to the fact that

t he ot)timal coordinate transformation Eq. (2.53), (2.54) is the approximate solution of Eq. (2.51 ) the iterations

do not practi(:ally improve the a('curacv of calculation and therefore, these results are not I)resented here.

The truncation error ('an be reduced if the optimal grid generation equation Eq.(2.48) is solved ]mmer-

ically. To avoid the solution of the third-order differential equation a new dependent variable u(x) = (x is

introduced. Then Eq.(2.48), which is a se('ond-order differential equation in terms of u(x), is integrated nu-

merically on a uniform grid constructed in the physical domain. To close E(t.(2.48 ) the metric coefficient (_ is

taken to be proportional to (]xx) 1/4 at the boundaries. The metric eoeffMent G. found this way is integrated

and the optin]al grid t)oint distribution is obtained by a third-order accurate pieeewise spline interpolation

of the flmction ((.r). As one can see in Fig.4.10, these ot)timal grid resuhs exhil)it the convergen(:e rate of

essentially O(A(4) an(t provi(te higher accuracy than those calculated on the ot)tima] grid Eq.(2.53),(2.54).

To (h,inonstrate the superiority of the optin]al grid adaptation over the equispaced grid t)oint distribution

an error convergence plot of a symmetric fourth-order accurate ai)proximation of f_ calculated on a uniform
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cretizat_on._ o/the metric coefficient on th, e optimal and uniform grids.

grid with the sam(, m]ml)er of grid 1)oints is also depicted in Fig.4.10. The L., norm of tit(, truncation error

of the third-order apt)roxiination Eq.(4.10) on the optimal grid is r(_duced t)y a factor of several hundred in

comparison with the fourth-order accurate results obtained on the uniform gri(t.

Error convergence plots for the fl)lh)wing hybrid approximation

(4.11, (Of) { '
= _ (-2//-1 - 3fi + 6fi+, f/+.,) , i even

i _l (-llfi + 18f/+1 - 9f/+._, + 2fi+:_) . i odd

cah'ulated on the oI)tima] and corresponding uniform grids are shown in Fig.4.11. The optimal grid results

are al)out 4 5 orders of magifitude mor(_ accurate than those obtained on the finest uniform grid. However, if

the metric coefficient is eva luat(_d l)y Eq.(4.10) in the entire computatioiml domain while the approximation

of f( remains the same Eq.(4.l 1) the error convergence rate of this inconsistent discr(,tizatiou })ecomes even

less than O(5(:_) as the grid is refined.

The next test example is a tburth-order accurate approximation of the first derivative of th(, flmction

f(x) = x", where the t)arameter 7i_has been chosen to be 49. Th( _ first derivatives f_ and :r( ar(, discr(,tiz(,(]

|)v a five-point symmetric at)t)roximation

1

(4.12) (gZ)+ = 12..k---_(9i-_ - 8g+_] + 8.<1/+1 - 9i+2) .

where 9(_) is either f(_) or :r((). It can be shown that if the order <)f approximation p is an eveu number

then for f(.r) = :r'" the optimal grid generation equation Eq.(2.14) can 1)(, solved analytically. Thus, we hay(,

p+l
(4.13) xol, t (_) = ("+ _ .

Th(, al)ove mat)ping is optimal i_ t h(, sense <)f the minimizatiou of th(' leading trun<:atiou (,rror term if m > p

otherwise any pth-<)rder a('curate difference expression approximates th(, first derivative f._ exactly. If w(' fix
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FIG..1.10. Error conveTyence for a third-order approximation of f_., f(x) = :r'" calculated on: 1) uniform grid, 2) optimal

grid generated numerically, 3) analytical optimal grid, 4) grid adapted in accordance with the art: length criterion, ,5) uniform

grid using four'th-order accurate discretization.

the parameter m to be sufficiently large one can observe that as the order of approximation p is increased

the optimal grid Eq.(4.13) becomes more uniform that correlates with the above theoretical analysis. The

optiinal grid point distribution can also be calculated numerically by using Eq.(2.54). At each grid point

the unknown parameter o(x) is forum as a solution of the equation

(4.14) T4((_) = 0.

where T4(o) is given by Eq.(2.59). For this particular choice of the flmction f(x), Eq.(4.14) can be solved

analytically that yields

1 m - 4
(4.15) o -

5 m - 2"

Note that the optimal mat)ping Eq.(2.54),(4.15) is identi(:al to E(t.(4.13) if we set p = 4 in it. Error

converg(,n('e t)lots calculated on the analytical Eq.(4.13) and numerical Eq.(2.54),(4.15) optimal grids as well

as on the ('orrest)onding uniform grid are shown in Fig.4.12. As one tail see in this figure the fourth-order

at)l)roxilnat ion Eq.(4.12) on t he ot)timal grid Eq. (4.13) exhil)it s even a higher convergence rat(, than O ( 'k_ r' )

that allows one to retlu(:e the L._, norm of the truncation error by 6 orders of magnitude ('Oral)areal to the

uniform grid results. The mmwrical apl)roxirnation of both the second derivative and the integral in Eq.(2.54)

leads to that the el)ritual grid Eq.(2.54),(4.15) generated numerically provides superconvergellt results only

on coarse grids whih, as the grid is refined the or(h'r of apl)roximation (leteriorates to 4. Nevertheless, the

evah]atioil of f.,. on the 80-('ell ot)timal grid Eq.(2.54),(4.15) is about 3 ()rders of magnitude more accurate

than that on tit(' unifl)rm grid with the same numl)er of grid l)oints. One of tit(' main reasons of such a

behavior is an error il_troduced by the numerical apl)roximation of f_._ in Eq.(2.54). As mentioned above,

the ot)timal mat)l)ing Eq.(4.13) is singular at ( = 0 that ('onsiderably (tecreases the a('(:ura('y of the f._.,.
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FIG. 4.11. Error convergence of a third-order hybrid appro'ximatiot_ calculated with the consistent and inconsistent dis-

cretizations of the metric coe_]icient on the optimal and uniform grid,s.

approximation Eq.(4.1). This perturbation intro(lueed into the ot)timal grid t)v the numerical evaluation

Eq.(4.l) (testroys the sui)ercoilvergence property. However, if one uses the exact expression for f.r.r dest)ite

that the integral in Eq.(2.54) and x(_) are (:alculated numerically, the order of al)proximation is practically

reeovere(1 to its oi)timal value that can |)e seen in Fig.4.12.

To (tenlonstrate the in]t)ortance of the consistent approximation of f_ and x_ error ('onvergen(:e plots

calculated using different hyt)rid at)t)roximations on the optimal an(l ('orrest)onding uniform grids are det)i('ted

in Fig.4.13. The fourth-order accurate hyt)rid apt)roximation is constructed as follows

{,(4.16) (f_)s = _ (fi-_ - 8fi-[ + 8fi+l - f,+2) , i even

_ (-3fi-! -- lOfi + 18fi+1 - 6fi+'2 + fi+:_) , i odd

If the metri(" coefficient _:_ is evaluated t)y the same difference expression emt)h)yed for the first derivative

f_ Eq.(4.16) then the leading term of the truncation error is vanished on the optimal grid E(t.(4.13). It is

evident in Fig.4.13 that the truncation error of the consistent hybrid at)l)roximation of f£ an(l .re exhibits

the convergence rate of ()(__(s). At the same time. if the inetric coetti(:ient is diseretize(t I)v the symmetric

fourth-order a('cm'ate formula Eq.(4.12) in the entire (:omt)utational domain, while the same ai)l)roximation

E(t.(4.16 ) is used for f_, the convergence rate deteriorates to ()(_X_ l) an(t the truncation error increases |)y

a factor of 50 100 in conq)arison with the consistent apt)roximation results. The deterioration of the error

(:onvergen(:e rate on the finest ol)timal mesh is presumal)ly caused l)y the ]na(:hine ac(:uraev.

4.2. 2D Test Example. We shall seek a particular solution of Eq.(3.6) in t h(, following form

f((, q) = e,'Z(H'J

(4.17) .ro_, ((, q) = (,-,Z(,_,,_

!1o1,_(_, II) = e°q '('l.
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uniform, grid using fifth-order accurah di,seT_tization,6) numerical optimal grid generated with the exact f_.,.

where (_, i3, and "y, 0, 0, _, are given and unknown constants, respectively. Note that this choice of f,

a', and !1 uniquely defines the flmetion f(a',y) in the physical domain. Since the abow, Inapping must be

nonsingular the Jacobian of the mapping, wlfich is

(4.18) J(_, q) = (2,'_i, - O0)e(_+°)_e(°+¢')',

should be positive in the whole computational domain that leads to

(4.19) q,._',- 0O > 0.

Substituting Eq.(4.17) into the first equation of £q.(3.6) yields

(4.20) (7_" - 00)c_ a = (-Oa + 2,fl)0 a + (t.c,a - Od)_ _a.

Equation (4.20) together with the constraint Eq.(4.19) give us a family of the optimal grids. The equation

is simplified considerably if we assume that 0 = _' = d = 1. Under this assumption Eq.(4.20) and (4.19) are

reduced to

(4.21) (2,- O)a :_ = ('y' - ¢_)0 "_+ (o- 8)2,a

(4.22) _ - 0 > 0.

corresl)ondingly. Equation (4.21) has three real roots

2,1 =¢)--0

(4.23) "_._,= 0
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FI(;..i. 13. Error convergence of a fourth-order hybrid approximation calculated with the consi._tent and inc.ons'istent

discretizations of the metric cocJficient on the optimal and uniform grids.

The roots % an(t % are not appropriate because the se(:on(t root (Ioes not meet the inequality Eq.(4.22)

wtfile tile thir(t root in|plies that f(x) = x. Therefore, the only non-trivial solution of Eq.(4.21), (4.22) is

_, + O = _. hltroducing a parameter m so that 3/0 = mth(, particular solution of E(1.(3.6 ) can 1)e written in

the following form

•popt (_, 71)= e_%'_

(4.24) .q,,pt(_, T_)= e_(( ,'
,n -_-2 "2m+l

f(x, y) = x ..... y ....

In the present test examt)l(_ the parameters m and (_ have been chosen to t)e 10 and 3, respectively. Tit(,

corresponding optimal 41 x 21 grid and 30 isolines of the function f(x, fl) are depicted iil Fig.4.14. It is

notable that the ot)timal grid is orthogonal neither in the domain nor at the boundaries. Moreover, the grid

lines are (:oncentrate(t near strollg gradients and at the same time, they are not stri('tlv aligned to the isolines

of f(J', y). A second-order accurate approximation of f_. is o|)tain(,d by using two-l)oint ('entral differences for

all the derivatives in Eq.(3.1). A unifi)rm grid is generated ])y the transfinite intert)olation of the t)()undary

nodes, whi(:h are uniformly (tistribute(t along the 1)otmdaries. Since the ot)timal grid Eq.(4.24) has been

('onstI'uCte(t under the assun]l)tion that the leading term of the truncation error it] the ( coordinate vanishes

Oil t.|l(_ optinlal grid we shall refine the grid only in _ while the numl)cr of gri(t cells in q is fixe(l and equal

to 20. Note that the grid refinement.in the 71 coordinate makes no influence on the convergent(, rate of the

truncation error that is consistent with Eq.(3.6).

A comparison of the truncation error convergence obtained on the Ol)timal and uniform grids is shown in

Fig.4.15. Similarly to the 1D test exalnples, the global order of the symmetric se('ond-order approximation

in two dimensions is increased by more than one on the ot)timal grid. Furthermore, th(' L2 ]R)rm of the

trun(:ation error is about 4 orders of magnitude less than that ot)tained on the ('orresl)onding mfiform gri(t.
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As can be seen in Fig.4.15, the new grid adaptation ¢:riterion enables one to reach the asymptotic convergence

rate on coarse grids while the application of a third-order accurate discretization on the uniform grid does

not permit us to get so essential reduction in the truncation error as on tim optimal grid.

The importance of the identical at)proximation of the first derivatives f{ and f,p and the metric coefficients

J'<. !/_, and :r,, 9,_. rest)ectively is illustrated in Fig.4.16. The figure shows that if f(, :r<, and :q_ are evaluated

1)3" the same hyl)rid discretization Eq.(4.3) the order of approximation in ( is increased by one if grid points
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are redistrilmted in accordance with Eq.(4.24) regardless what second-order approximations are used for f,,

:r,i, and .q,_. However. if the metric (:oeffi(:ients :r_ and y_ are evaluate(t by the two-point symmetric second-

order difference expression in the entire computational domain, whereas both the hybrid approximation of f_

Eq.(4.3) and the optimal grid Eq.(4.24) remain the same, the order of at)proximation of f._ in ( deteriorates

to 2 and the truncation error is increased by a factor of 10:L

5. Conclusion. The new grid adaptation strategy based on the mininfization of the leading truncation

error term of an arbitrary pth-order finite difference discretization has been developed. The basic idea of the

method is t,o redistribute grid t)oints so that tit(, leading truncation error terms due to the differential operator

and the metric coefficients cancel each other so that the (lesign order of al)proximation on the optimal grid

is increased bv one in the entire (:omtmtational domain. In contrast to most of the adat)tive grid techniques,

for the present method neither the truncation error estimate nor the sl)ecifieation of weighting t)arameters is

required. Another very attractive character|st|(: of the new approach is its al)t)licability to hybrid (tis(:retiza-

tions. It has been i)roved that if the (tifl'erential ot)erator and the metric coeffi(:ients are evah]ated identically

then the same ot)timal grid a(laptation criterion, wifich is valid fi)r non-hybrid diseretizations, can be used

in the entire computational domain regardless of t)oints where the hybrid differen(:e ot)erator switches flom

one at)l)roximation to another. ()he of the main advantages of the new method is that it can be (tire('tly

extended to multit)le dimensions. It has been shown that the multidimensional grid a(lal)tation criteria are

fiflly (:onsistent with the one-dimensiomd ('ountert)art. The 1D and 2D numerical calculations show that

the trun(:ation error obtained on the ol)timal gri(l is both sui)er('onvergent and reduce(1 by several orders

of magnitude in cOral)arisen with th(, uniform and standard adapt iv(, grid results for all the test examt)les

('onsi(tered.
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